Классическое решение для таких проблем — минимизация нормы L 2 {\displaystyle L_{2}} — то есть, минимизировать количество энергии в системе...
Условие:
Классическое решение для таких проблем — минимизация нормы L 2 {\displaystyle L_{2}} — то есть, минимизировать количество энергии в системе. Это обычно простая математика (включающая только перемножение матриц с помощью псевдообратного базиса выборки). Однако это приводит к плохим результатам для большинства практических приложений, так как неизвестные (отсутствующие в выборке) коэффициенты редко имеют нулевую энергию. Более привлекательным решением было бы минимизировать норму L 0 {\displaystyle L_{0}}, или эквивалентно максимизировать число нулевых коэффициентов в новом базисе. Однако это NP-сложная задача (она включает проблемы суммы подмножества) и также в вычислительном отношении неосуществима для всех, кроме самых крошечных наборов данных. Таким образом, согласно идеям Тао Теренса et al., принято минимизировать аппроксимирующую L 1 {\displaystyle L_{1}}-норму, или сумму в абсолютных значениях. Задача минимума L 1 {\displaystyle L_{1}}-нормы формулируется в виде задачи линейного программирования, для которой существуют эффективные методы решения. Это приводит к сопоставимым результатам использования L 0 {\displaystyle L_{0}} нормы, часто приводя к результатам, когда многие коэффициенты равны нулю. Что можно представить в виде следующих формул:


